
    Yh~X                        d dl mZ d dlmZ d dlmZmZmZ d dlZd dlm	Z	 d dl
mZmZmZ g dZ ed          Z e ed	          ed
di          Zdedeegef         fdZdededej        dej        ddf
dZ ed dj        dHi e          ddddej        ddddedee         dededeej                 dej        deej                 dede	fd            Z ed  d!j        dHi e          ddej        ddd"dededeej                 dej        deej                 dede	fd#            Z ed$ d%j        dHi e          dddej        ddd&ded'ededeej                 dej        deej                 dede	fd(            Z ed) d*j        dHi e          d+ddej        ddd,ded-ededeej                 dej        deej                 dede	fd.            Z ed/ d0j        dHi e          ddej        ddd"dededeej                 dej        deej                 dede	fd1            Z  ed2 d3j        dHi e          ddej        ddd"dededeej                 dej        deej                 dede	fd4            Z! ed5 d6j        dHi e          ddej        ddd"dededeej                 dej        deej                 dede	fd7            Z" ed8 d9j        dHi e          ddej        ddd"dededeej                 dej        deej                 dede	fd:            Z# ed; d<j        dHi e          ddej        ddd"d=ededeej                 dej        deej                 dede	fd>            Z$ ed? d@j        dHi e          dAddej        dddBdCededeej                 dej        deej                 dede	fdD            Z% edE dFj        dHi e          ddej        ddd"dededeej                 dej        deej                 dede	fdG            Z&dS )I    )Iterable)sqrt)CallableOptionalTypeVarN)Tensor)factory_common_argsmerge_dictsparse_kwargs)bartlettblackmancosineexponentialgaussiangeneral_cosinegeneral_hamminghamminghannkaisernuttall_Ta6  
    M (int): the length of the window.
        In other words, the number of points of the returned window.
    sym (bool, optional): If `False`, returns a periodic window suitable for use in spectral analysis.
        If `True`, returns a symmetric window suitable for use in filter design. Default: `True`.
normalizationzThe window is normalized to 1 (maximum value is 1). However, the 1 doesn't appear if :attr:`M` is even and :attr:`sym` is `True`.argsreturnc                  0     dt           dt           f fd}|S )a8  Adds docstrings to a given decorated function.

    Specially useful when then docstrings needs string interpolation, e.g., with
    str.format().
    REMARK: Do not use this function if the docstring doesn't need string
    interpolation, just write a conventional docstring.

    Args:
        args (str):
    or   c                 <    d                               | _        | S )N )join__doc__)r   r   s    n/var/www/tools.fuzzalab.pt/emblema-extractor/venv/lib/python3.11/site-packages/torch/signal/windows/windows.py	decoratorz_add_docstr.<locals>.decorator8   s    GGDMM	    )r   )r   r"   s   ` r!   _add_docstrr$   ,   s7    R B       r#   function_nameMdtypelayoutc                     |dk     rt          |  d|           |t          j        urt          |  d|           |t          j        t          j        fvrt          |  d|           dS )a  Performs common checks for all the defined windows.
    This function should be called before computing any window.

    Args:
        function_name (str): name of the window function.
        M (int): length of the window.
        dtype (:class:`torch.dtype`): the desired data type of returned tensor.
        layout (:class:`torch.layout`): the desired layout of returned tensor.
    r   z, requires non-negative window length, got M=z/ is implemented for strided tensors only, got: z) expects float32 or float64 dtypes, got: N)
ValueErrortorchstridedfloat32float64)r%   r&   r'   r(   s       r!   _window_function_checksr/   ?   s     	1uuMM!MM
 
 	
 U]""UUVUU
 
 	
 U]EM222NNuNN
 
 	
 32r#   z
Computes a window with an exponential waveform.
Also known as Poisson window.

The exponential window is defined as follows:

.. math::
    w_n = \exp{\left(-\frac{|n - c|}{\tau}\right)}

where `c` is the ``center`` of the window.
    aF  

{normalization}

Args:
    {M}

Keyword args:
    center (float, optional): where the center of the window will be located.
        Default: `M / 2` if `sym` is `False`, else `(M - 1) / 2`.
    tau (float, optional): the decay value.
        Tau is generally associated with a percentage, that means, that the value should
        vary within the interval (0, 100]. If tau is 100, it is considered the uniform window.
        Default: 1.0.
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric exponential window of size 10 and with a decay value of 1.0.
    >>> # The center will be at (M - 1) / 2, where M is 10.
    >>> torch.signal.windows.exponential(10)
    tensor([0.0111, 0.0302, 0.0821, 0.2231, 0.6065, 0.6065, 0.2231, 0.0821, 0.0302, 0.0111])

    >>> # Generates a periodic exponential window and decay factor equal to .5
    >>> torch.signal.windows.exponential(10, sym=False,tau=.5)
    tensor([4.5400e-05, 3.3546e-04, 2.4788e-03, 1.8316e-02, 1.3534e-01, 1.0000e+00, 1.3534e-01, 1.8316e-02, 2.4788e-03, 3.3546e-04])
          ?TF)centertausymr'   r(   devicerequires_gradr1   r2   r3   r4   r5   c          	         |t          j                    }t          d| ||           |dk    rt          d| d          |r|t          d          | dk    rt          j        d||||          S ||s| dk    r| n| dz
  d	z  }d|z  }t          j        | |z  | | dz
  z   |z  | ||||
          }	t          j        t          j        |	                     S )Nr   r   zTau must be positive, got: 	 instead.z)Center must be None for symmetric windowsr   r'   r(   r4   r5             @startendstepsr'   r(   r4   r5   )r+   get_default_dtyper/   r*   emptylinspaceexpabs)
r&   r1   r2   r3   r'   r(   r4   r5   constantks
             r!   r   r   Y   s&   r }'))M1eV<<<
axxEsEEEFFF
 Fv!DEEEAvv{fV=
 
 
 	
 ~31q55!!a!es:3wHg WA(*#	 	 	A 9eill]###r#   a  
Computes a window with a simple cosine waveform, following the same implementation as SciPy.
This window is also known as the sine window.

The cosine window is defined as follows:

.. math::
    w_n = \sin\left(\frac{\pi (n + 0.5)}{M}\right)

This formula differs from the typical cosine window formula by incorporating a 0.5 term in the numerator,
which shifts the sample positions. This adjustment results in a window that starts and ends with non-zero values.

a  

{normalization}

Args:
    {M}

Keyword args:
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric cosine window.
    >>> torch.signal.windows.cosine(10)
    tensor([0.1564, 0.4540, 0.7071, 0.8910, 0.9877, 0.9877, 0.8910, 0.7071, 0.4540, 0.1564])

    >>> # Generates a periodic cosine window.
    >>> torch.signal.windows.cosine(10, sym=False)
    tensor([0.1423, 0.4154, 0.6549, 0.8413, 0.9595, 1.0000, 0.9595, 0.8413, 0.6549, 0.4154])
r3   r'   r(   r4   r5   c          	      @   |t          j                    }t          d| ||           | dk    rt          j        d||||          S d}t           j        |s| dk    r| dz   n| z  }t          j        ||z  || dz
  z   |z  | ||||          }t          j        |          S )Nr   r   r8   r9         ?r:   r<   )r+   r@   r/   rA   pirB   sin	r&   r3   r'   r(   r4   r5   r=   rE   rF   s	            r!   r   r      s    d }'))Ha777Avv{fV=
 
 
 	
 Ex<A1q551=Hha!e_(#	 	 	A 9Q<<r#   z
Computes a window with a gaussian waveform.

The gaussian window is defined as follows:

.. math::
    w_n = \exp{\left(-\left(\frac{n}{2\sigma}\right)^2\right)}
    a   

{normalization}

Args:
    {M}

Keyword args:
    std (float, optional): the standard deviation of the gaussian. It controls how narrow or wide the window is.
        Default: 1.0.
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric gaussian window with a standard deviation of 1.0.
    >>> torch.signal.windows.gaussian(10)
    tensor([4.0065e-05, 2.1875e-03, 4.3937e-02, 3.2465e-01, 8.8250e-01, 8.8250e-01, 3.2465e-01, 4.3937e-02, 2.1875e-03, 4.0065e-05])

    >>> # Generates a periodic gaussian window and standard deviation equal to 0.9.
    >>> torch.signal.windows.gaussian(10, sym=False,std=0.9)
    tensor([1.9858e-07, 5.1365e-05, 3.8659e-03, 8.4658e-02, 5.3941e-01, 1.0000e+00, 5.3941e-01, 8.4658e-02, 3.8659e-03, 5.1365e-05])
)stdr3   r'   r(   r4   r5   rM   c          	         |t          j                    }t          d| ||           |dk    rt          d| d          | dk    rt          j        d||||          S |s| dk    r| n| dz
   dz  }d|t          d	          z  z  }t          j        ||z  || dz
  z   |z  | ||||
          }	t          j        |	d	z             S )Nr   r   z*Standard deviation must be positive, got: r7   r8   r9   r:   r;      r<   )r+   r@   r/   r*   rA   r   rB   rC   )
r&   rM   r3   r'   r(   r4   r5   r=   rE   rF   s
             r!   r   r      s	   ` }'))J5&999
axxTcTTTUUUAvv{fV=
 
 
 	
 /q1uuaa!a%036EC$q''M"Hha!e_(#	 	 	A 9q!tWr#   aK  
Computes the Kaiser window.

The Kaiser window is defined as follows:

.. math::
    w_n = I_0 \left( \beta \sqrt{1 - \left( {\frac{n - N/2}{N/2}} \right) ^2 } \right) / I_0( \beta )

where ``I_0`` is the zeroth order modified Bessel function of the first kind (see :func:`torch.special.i0`), and
``N = M - 1 if sym else M``.
    a  

{normalization}

Args:
    {M}

Keyword args:
    beta (float, optional): shape parameter for the window. Must be non-negative. Default: 12.0
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric gaussian window with a standard deviation of 1.0.
    >>> torch.signal.windows.kaiser(5)
    tensor([4.0065e-05, 2.1875e-03, 4.3937e-02, 3.2465e-01, 8.8250e-01, 8.8250e-01, 3.2465e-01, 4.3937e-02, 2.1875e-03, 4.0065e-05])
    >>> # Generates a periodic gaussian window and standard deviation equal to 0.9.
    >>> torch.signal.windows.kaiser(5, sym=False,std=0.9)
    tensor([1.9858e-07, 5.1365e-05, 3.8659e-03, 8.4658e-02, 5.3941e-01, 1.0000e+00, 5.3941e-01, 8.4658e-02, 3.8659e-03, 5.1365e-05])
g      (@)betar3   r'   r(   r4   r5   rP   c          	      j   |t          j                    }t          d| ||           |dk     rt          d| d          | dk    rt          j        d||||          S | dk    rt          j        d||||          S t          j        |||	          }| }d
|z  |s| n| dz
  z  }t          j        ||| dz
  |z  z             }	t          j        ||	| ||||          }
t          j	        t          j
        ||z  t          j        |
d          z
                      t          j	        |          z  S )Nr   r   z beta must be non-negative, got: r7   r8   r9   r:   r:   )r'   r4   r;   r<   rO   )r+   r@   r/   r*   rA   onestensorminimumrB   i0r   pow)r&   rP   r3   r'   r(   r4   r5   r=   rE   r>   rF   s              r!   r   r   N  sk   b }'))Ha777axxKDKKKLLLAvv{fV=
 
 
 	
 	AvvzfV=
 
 
 	

 <E&999DEETzc4QQq1u5H
-eq1u&88
9
9C#	 	 	A 8EJtd{UYq!__<==>>$OOr#   z
Computes the Hamming window.

The Hamming window is defined as follows:

.. math::
    w_n = \alpha - \beta\ \cos \left( \frac{2 \pi n}{M - 1} \right)
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    {sym}
    alpha (float, optional): The coefficient :math:`\alpha` in the equation above.
    beta (float, optional): The coefficient :math:`\beta` in the equation above.
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric Hamming window.
    >>> torch.signal.windows.hamming(10)
    tensor([0.0800, 0.1876, 0.4601, 0.7700, 0.9723, 0.9723, 0.7700, 0.4601, 0.1876, 0.0800])

    >>> # Generates a periodic Hamming window.
    >>> torch.signal.windows.hamming(10, sym=False)
    tensor([0.0800, 0.1679, 0.3979, 0.6821, 0.9121, 1.0000, 0.9121, 0.6821, 0.3979, 0.1679])
c                ,    t          | |||||          S )NrG   r   r&   r3   r'   r(   r4   r5   s         r!   r   r     s.    ^ 	#   r#   z
Computes the Hann window.

The Hann window is defined as follows:

.. math::
    w_n = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{M - 1} \right)\right] =
    \sin^2 \left( \frac{\pi n}{M - 1} \right)
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric Hann window.
    >>> torch.signal.windows.hann(10)
    tensor([0.0000, 0.1170, 0.4132, 0.7500, 0.9698, 0.9698, 0.7500, 0.4132, 0.1170, 0.0000])

    >>> # Generates a periodic Hann window.
    >>> torch.signal.windows.hann(10, sym=False)
    tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])
c          	      .    t          | d|||||          S )NrI   alphar3   r'   r(   r4   r5   rY   rZ   s         r!   r   r     s1    \ 	#   r#   z
Computes the Blackman window.

The Blackman window is defined as follows:

.. math::
    w_n = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{M - 1} \right) + 0.08 \cos \left( \frac{4 \pi n}{M - 1} \right)
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric Blackman window.
    >>> torch.signal.windows.blackman(5)
    tensor([-1.4901e-08,  3.4000e-01,  1.0000e+00,  3.4000e-01, -1.4901e-08])

    >>> # Generates a periodic Blackman window.
    >>> torch.signal.windows.blackman(5, sym=False)
    tensor([-1.4901e-08,  2.0077e-01,  8.4923e-01,  8.4923e-01,  2.0077e-01])
c          	          |t          j                    }t          d| ||           t          | g d|||||          S )Nr   )gzG?rI   g{Gz?ar3   r'   r(   r4   r5   )r+   r@   r/   r   rZ   s         r!   r   r     s^    Z }'))J5&999	


#   r#   a4  
Computes the Bartlett window.

The Bartlett window is defined as follows:

.. math::
    w_n = 1 - \left| \frac{2n}{M - 1} - 1 \right| = \begin{cases}
        \frac{2n}{M - 1} & \text{if } 0 \leq n \leq \frac{M - 1}{2} \\
        2 - \frac{2n}{M - 1} & \text{if } \frac{M - 1}{2} < n < M \\ \end{cases}
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric Bartlett window.
    >>> torch.signal.windows.bartlett(10)
    tensor([0.0000, 0.2222, 0.4444, 0.6667, 0.8889, 0.8889, 0.6667, 0.4444, 0.2222, 0.0000])

    >>> # Generates a periodic Bartlett window.
    >>> torch.signal.windows.bartlett(10, sym=False)
    tensor([0.0000, 0.2000, 0.4000, 0.6000, 0.8000, 1.0000, 0.8000, 0.6000, 0.4000, 0.2000])
c          	      ^   |t          j                    }t          d| ||           | dk    rt          j        d||||          S | dk    rt          j        d||||          S d}d|s| n| dz
  z  }t          j        ||| dz
  |z  z   | ||||	          }dt          j        |          z
  S )
Nr   r   r8   r9   r:   rR   rO   r<   )r+   r@   r/   rA   rS   rB   rD   rL   s	            r!   r   r   T  s    ^ }'))J5&999Avv{fV=
 
 
 	
 	AvvzfV=
 
 
 	
 ES+AAa!e,HQUh&&#	 	 	A uy||r#   z
Computes the general cosine window.

The general cosine window is defined as follows:

.. math::
    w_n = \sum^{M-1}_{i=0} (-1)^i a_i \cos{ \left( \frac{2 \pi i n}{M - 1}\right)}
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    a (Iterable): the coefficients associated to each of the cosine functions.
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric general cosine window with 3 coefficients.
    >>> torch.signal.windows.general_cosine(10, a=[0.46, 0.23, 0.31], sym=True)
    tensor([0.5400, 0.3376, 0.1288, 0.4200, 0.9136, 0.9136, 0.4200, 0.1288, 0.3376, 0.5400])

    >>> # Generates a periodic general cosine window with 2 coefficients.
    >>> torch.signal.windows.general_cosine(10, a=[0.5, 1 - 0.5], sym=False)
    tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])
r`   c          	         |t          j                    }t          d| ||           | dk    rt          j        d||||          S | dk    rt          j        d||||          S t          |t                    st          d          |st          d          d	t           j	        z  |s| n| dz
  z  }t          j
        d| dz
  |z  | ||||
          }t          j        d t          |          D             |||          }	t          j        |	j        d         |	j        |	j        |	j                  }
|	                    d          t          j        |
                    d          |z            z                      d          S )Nr   r   r8   r9   r:   rR   z!Coefficients must be a list/tuplezCoefficients cannot be emptyrO   r<   c                 $    g | ]\  }}d |z  |z  S )rb    ).0iws      r!   
<listcomp>z"general_cosine.<locals>.<listcomp>  s$    00041a"Q000r#   )r4   r'   r5   )r'   r4   r5   rb   )r+   r@   r/   rA   rS   
isinstancer   	TypeErrorr*   rJ   rB   rT   	enumeratearangeshaper'   r4   r5   	unsqueezecossum)r&   r`   r3   r'   r(   r4   r5   rE   rF   a_irg   s              r!   r   r     s   ^ }')),a???Avv{fV=
 
 
 	
 	AvvzfV=
 
 
 	
 a"" =;<<< 9788858|6qqQ7HUh#	 	 	A ,009Q<<000#	  C 		!iz'		 	 	A MM"	!++b//A*= > >>CCAFFFr#   z
Computes the general Hamming window.

The general Hamming window is defined as follows:

.. math::
    w_n = \alpha - (1 - \alpha) \cos{ \left( \frac{2 \pi n}{M-1} \right)}
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    alpha (float, optional): the window coefficient. Default: 0.54.
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

Examples::

    >>> # Generates a symmetric Hamming window with the general Hamming window.
    >>> torch.signal.windows.general_hamming(10, sym=True)
    tensor([0.0800, 0.1876, 0.4601, 0.7700, 0.9723, 0.9723, 0.7700, 0.4601, 0.1876, 0.0800])

    >>> # Generates a periodic Hann window with the general Hamming window.
    >>> torch.signal.windows.general_hamming(10, alpha=0.5, sym=False)
    tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])
gHzG?r\   r]   c          	      8    t          | |d|z
  g|||||          S )Nr0   r_   r   )r&   r]   r3   r'   r(   r4   r5   s          r!   r   r     s:    ^ 	#+
#   r#   z
Computes the minimum 4-term Blackman-Harris window according to Nuttall.

.. math::
    w_n = 1 - 0.36358 \cos{(z_n)} + 0.48917 \cos{(2z_n)} - 0.13659 \cos{(3z_n)} + 0.01064 \cos{(4z_n)}

where :math:`z_n = \frac{2 \pi n}{M}`.
    a  

{normalization}

Arguments:
    {M}

Keyword args:
    {sym}
    {dtype}
    {layout}
    {device}
    {requires_grad}

References::

    - A. Nuttall, "Some windows with very good sidelobe behavior,"
      IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 1, pp. 84-91,
      Feb 1981. https://doi.org/10.1109/TASSP.1981.1163506

    - Heinzel G. et al., "Spectrum and spectral density estimation by the Discrete Fourier transform (DFT),
      including a comprehensive list of window functions and some new flat-top windows",
      February 15, 2002 https://holometer.fnal.gov/GH_FFT.pdf

Examples::

    >>> # Generates a symmetric Nutall window.
    >>> torch.signal.windows.general_hamming(5, sym=True)
    tensor([3.6280e-04, 2.2698e-01, 1.0000e+00, 2.2698e-01, 3.6280e-04])

    >>> # Generates a periodic Nuttall window.
    >>> torch.signal.windows.general_hamming(5, sym=False)
    tensor([3.6280e-04, 1.1052e-01, 7.9826e-01, 7.9826e-01, 1.1052e-01])
c          	      2    t          | g d|||||          S )N)gzD?g;%N?g1|?gC ˅?r_   rt   rZ   s         r!   r   r   ;  s7    n 	
6
6
6#   r#   re   )'collections.abcr   mathr   typingr   r   r   r+   r   torch._torch_docsr	   r
   r   __all__r   window_common_argsstrr$   intr'   r(   r/   formatr,   floatboolr4   r   r   r   r   r   r   r   r   r   r   r   re   r#   r!   <module>r      s
   $ $ $ $ $ $       . . . . . . . . . .        L L L L L L L L L L   WT]] [L	   7  "s xb1    &


',{
<AL
	
 
 
 
4 
 < 	=   > ?   - -b ##' =%)*$ *$ *$
*$ UO*$ 
	*$
 
*$ EK *$ L*$ U\"*$ *$ *$ *$ *$]- -\*$Z  . / 0 1 ( (X #' =%)     
  
  EK 	 
 L  U\"         S( (R F  2 3 4 5 % %R #' =%)% % %
% 
% 
	%
 EK % L% U\"% % % % %M% %L%P 
 . / 0 1 & &T #' =%)-P -P -P
-P -P 
	-P
 EK -P L-P U\"-P -P -P -P -PO& &N-P`  2 3 4 5 % %R #' =%)  
 
 EK 	
 L U\"    M% %L&  . / 0 1 $ $P #' =%)  
 
 EK 	
 L U\"    K$ $J(  . / 0 1 # #N #' =%)  
 
 EK 	
 L U\"    I# #H2 	 . / 0 1 % %R #' =%)% % %
% 
% EK 	%
 L% U\"% % % % %M% %L%P  0 1 2 3 $ $R #' =%)7G 7G 7G 7G 
	7G
 EK 7G L7G U\"7G 7G 7G 7G 7GK$ $J7Gt  0 1 2 3 $ $P #' =%)    
	
 EK  L U\"    K$ $J* ! !B C# #D E# #- -b #' =%)  
 
 EK 	
 L U\"    ]- -\  r#   