
    Yhm                        d dl Z d dlmZ d dlmZmZmZ d dlZd dlm	Z	m
Z
 d dlmZmZmZmZmZmZmZmZmZmZ g dZ edd          Z G d	 d
ej                  Z	 ddej        dedefdZ G d de          Z G d de          ZdS )    N)
namedtuple)AnyCallableOptional))sparse_semi_structured_from_dense_cutlass'sparse_semi_structured_to_dense_cutlass)
fallback_dispatchersemi_sparse_addmmsemi_sparse_detachsemi_sparse_indicessemi_sparse_linearsemi_sparse_mmsemi_sparse_scaled_mmsemi_sparse_tsemi_sparse_valuessemi_sparse_view)SparseSemiStructuredTensor!SparseSemiStructuredTensorCUTLASS$SparseSemiStructuredTensorCUSPARSELTto_sparse_semi_structured_SEMI_STRUCTURED_SPARSE_CONFIGz=sparse_min_rows sparse_min_cols dense_min_rows dense_min_colsc                      e Zd ZU dZdZeed<   eej	        e
f         ed<   dZeed<   dZeed<   dZeed<   eed	<   eeef         ed
<   eej                 ed<   eej                 ed<   eej                 ed<   eej                 ed<   eej                 ed<   eed<   eed<   g dZe	 	 	 d(dej        deej                 deej                 deej                 deej                 deej                 dededefd            ZdefdZdeee         eej        eeef         f         fdZedeej        eeef         dej        fd            Zej        j        Zede fd            Z!ed)d*d            Z"edej        ddfd            Z#ed ej        dej        fd!            Z$d" Z%edej        dd fd#            Z&dd$d%ej        d&eej                 dej        fd'Z'dS )+r   a  
    This class implements semi-structured sparsity as a Tensor subclass.

    Semi-structured sparsity describes a sparsity pattern where n in every 2n elements are sparse,
    depending on the datatype. It is also referred to as 2:4 sparsity or fine-grained
    structured sparsity.

    There are two backends available for semi_structred sparsity, either cuSPARSELt or CUTLASS.
    This class is meant to serve as a base class for both implementations. SparseSemiStructuredCUTLASS
    and SparseSemiStructuredCUSPARSELT both inherit from this class and define three backend-specific items.
    Note that as such, this class cannot be instantiated directly.

    -`_DTYPE_SHAPE_CONSTRAINTS` - A dictionary holding backend specific dense/sparse min shape constraints
    - `def from_dense()` - backend specific compression routines
    - `def _mm()` - backend specific mm op (either torch._cslt_sparse_mm or torch._sparse_semi_structured_(mm|addmm))
    r   _DEFAULT_ALG_ID_DTYPE_SHAPE_CONSTRAINTSF_FORCE_CUTLASS_FUSE_TRANSPOSE_PROTOTYPE_WARNING_SHOWNBACKENDSPARSE_DISPATCHpackedmetapacked_tmeta_tcompressed_swizzled_bitmaskfuse_transpose_cusparseltalg_id_cusparselt)r    r!   r"   r#   r$   shaperequires_gradc
                    | j         sTt          j        dt                     d| _         |                                  t
          j                            |            ||}
n||}
nt          d          t
          j	        
                    | ||
j        |
j        |
j        |	          }||_        ||_        ||_        ||_        ||_        ||_        ||_        |S )a0  
        Create a new instance of the tensor subclass from the compressed sparse representation.

        We have the option to create the subclass with the compressed representations of both X and X', for training.
        For inference, we only need a single representation (either X or X'), while the corresponding other set will be None.

        Depending on the backend selected, certain fields will be set to None. (CUSPARSELT vs CUTLASS)

        Args:
            shape: The shape of the original dense tensor
            packed: The compressed representation of the original dense tensor
            meta: The metadata of the original dense tensor, if it is stored separately
            packed_t: The compressed representation of the transposed original dense tensor
            meta_t: The metadata of the transposed original dense tensor, if it is stored separately
            compressed_swizzled_bitmask: The masks used by the CUTLASS backend to determine which threads should
                                         participate in the computation. Used for pointwise ops.
            fuse_transpose_cusparselt: When running with cuSPARSELt, we have the option to fuse a transposition
                                       with a matmul, which is useful in the case of 2:4 sparse training.
            alg_id_cusparselt: The algorithm id to use when using cuSPARSELT, will have effect on performance

        Returns:
            torch.Tensor: A torch.Tensor wrapper subclass.

        Raises:
            ValueError: If all of the tensor arguments are None.
        zThe PyTorch API of SparseSemiStructuredTensor is in prototype stage and will change in the near future. Please open a Github issue for features requests and see our documentation on the torch.sparse module for further information about the project.TNz3At least one of packed or packed_t must be provided)devicedtypelayoutr(   )r   warningswarnUserWarning_load_dispatch_tabletorch_dynamoallow_in_graph
ValueErrorTensor_make_wrapper_subclassr*   r+   r,   r    r!   r"   r#   r$   r%   r&   )clsr'   r    r!   r"   r#   r$   r%   r&   r(   previous_tensortensors               n/var/www/tools.fuzzalab.pt/emblema-extractor/venv/lib/python3.11/site-packages/torch/sparse/semi_structured.py__new__z"SparseSemiStructuredTensor.__new__K   s    N + 	.MH
    ,0C(
 $$&&& M((---$OO!&OORSSS44")!'")' 5 
 
 "-H*+D(#4     returnc                 T    t          | d          sJ | j        j         d| j         dS )Nr'   z(shape=))hasattr	__class____name__r'   )selfs    r:   __repr__z#SparseSemiStructuredTensor.__repr__   s6    tW%%%%%.)??$*????r<   c                      t          t           fd j                            } j         j         j         j        f}||fS )Nc                 (    t          |           d uS N)getattr)xrC   s    r:   <lambda>z?SparseSemiStructuredTensor.__tensor_flatten__.<locals>.<lambda>   s    WT1--T9 r<   )listfilter	__slots__r'   r%   r&   r(   )rC   inner_tensorstensor_metas   `  r:   __tensor_flatten__z-SparseSemiStructuredTensor.__tensor_flatten__   sZ     99994>JJ
 
 J*"	
 k))r<   rO   c                     |\  }}}} | ||                     dd           |                     dd           |                     dd           |                     dd           |                     dd           |||	  	        S )Nr    r!   r"   r#   r$   	r'   r    r!   r"   r#   r$   r%   r&   r(   )get)	r7   rN   rO   
outer_sizeouter_strider'   r%   r&   r(   s	            r:   __tensor_unflatten__z/SparseSemiStructuredTensor.__tensor_unflatten__   s     NYJ(*;]s $$Xt44""6400"&&z488 $$Xt44(5(9(9-t) ) '@/'
 
 
 	
r<   c                     |j         | j        vrt          | j         d|j         d           | j        |j                  ||||          S )NzI only supports a specific set of operations, can't perform requested op (r?   )_overloadpacketr   NotImplementedErrorrB   )r7   functypesargskwargss        r:   __torch_dispatch__z-SparseSemiStructuredTensor.__torch_dispatch__   sp    s':::%< @ @/3}@ @ @   9s"4#78udFSSSr<   Nc                 6   t          | dd          t          j        j        j        t
          t          j        j        j        t          t          j        j        j        t          t          j        j        j
        t          t          j        j        j        t          t          j        j        j        t          t          j        j        j        t           t          j        j        j        t$          t          j        j        j        t$          t          j        j        j        t*          t          j        j        j        t.          t          j        j        j        t          t          j        j        j        t4          i| _        || j                            |           dS dS dS )zT
        Loads the op overload sparse dispatch table for the current class.
        r   N)rH   r1   opsatenvaluesr   indicesr   is_same_sizer	   detach_detachr   tr   viewr   mmr   matmuladdmmr
   linearr   _to_copy
_scaled_mmr   r   update)r7   custom_dispatch_tables     r:   r0   z/SparseSemiStructuredTensor._load_dispatch_table   s    
 3)4008	%'9	&(;	+-@	&(;	%'9	 -	#%5	!>	%~	$&7	%'9	')<	)+@#C %0#**+@AAAAA# 98  10r<   original_tensorc           	      .   |j         st          d|j         d          |                                dk    r%t          d|                                 d          |                                st          d          |j        | j        vrt          d|j         d|  d	          |j        \  }}| j        |j                 j        }| j        |j                 j	        }||k     s||z  s||k     s||z  rt          d
|j         d| d| d          dS )z_
        Assert that the given tensor is valid for semi-structured sparse compression.
        zError original_tensor.device= z= is not supported! Only CUDA tensors are currently supported.   zError original_tensor.dim = z; is not supported! Only 2d tensors are currently supported.zXError original_tensor is not contiguous!Only contiguous tensors are currently supported.zError original_tensor.dtype z is not a supported dtype for !zError original_tensor.shape zS is not supported! Both dimensions must be larger or equal than and a multiple of (z, r?   N)
is_cudaRuntimeErrorr*   dimis_contiguousr+   r   r'   sparse_min_rowssparse_min_cols)r7   rq   mnmin_rowsmin_colss         r:    _validate_device_dim_dtype_shapez;SparseSemiStructuredTensor._validate_device_dim_dtype_shape   s    & 	=1G = = =     A%%;/B/B/D/D ; ; ;   ,,.. 	C    (DDDj/Djjdgjjj  
 $1/0EFV/0EFVx<<1x<<1x<<1x<<k/D k kS[k k_gk k k   ,8<r<   dense_inputc                 P   |                                 dk    sJ |j        \  }}| j        |j                 j        }| j        |j                 j        }||k     s||z  r| |z  nd}||k     s||z  r| |z  nd}|s|r)t          j        j        	                    |d|d|f          S |S )z
        Calculates padding for dense tensor and pads tensor if necessary.
        If padding is not required, this function returns the original tensor.
        rs   r   )
rw   r'   r   r+   dense_min_rowsdense_min_colsr1   nn
functionalpad)r7   r   r{   r|   r}   r~   to_pad_mto_pad_ns           r:   _pad_dense_inputz+SparseSemiStructuredTensor._pad_dense_input  s       A%%%%  1/0ABQ/0ABQ %&LLALLA2==a$%LLALLA2==a 	x 	8&**;Ha8RSSSr<   c                     | j         d         }t          j        | t          j        || j        | j                            S )N)r+   r*   )r'   r1   ri   eyer+   r*   )rC   cols     r:   to_densez#SparseSemiStructuredTensor.to_dense,  s4    jnxei4:dkRRRSSSr<   c                     t           rG   rY   r7   rq   s     r:   
from_densez%SparseSemiStructuredTensor.from_dense0  s    !!r<   biasBr   c                    t           rG   r   )rC   r   r   r]   s       r:   _mmzSparseSemiStructuredTensor._mm4  s
     "!r<   )Fr   FrG   )r=   N)(rB   
__module____qualname____doc__r   int__annotations__dictr1   r+   r   r   boolr   r   strr   r   r5   rM   staticmethodSizer;   rD   tuplerK   rP   classmethodrV   _C_disabled_torch_function_impl__torch_function__r   r^   r0   r   r   r   r   r    r<   r:   r   r   &   s         " OS"5;0N#NOOOO ND   !OT!!!%*d***LLL(H,----U\""""
5<
    u|$$$$U\""""!)%,!7777####WWWI +0!"#Q QzQ &Q u|$	Q
 5<(Q &Q &.el%;Q $(Q Q Q Q Q \Qf@# @ @ @ @*	tCy%
D#t ;<<	=* * * * 
 5:tS$67
 

 
 
 [
, ?Tc T T T [T B B B B [B. (u| (PT ( ( ( [(T 5< EL    [*T T T " ":V " " " [" (,	" " "<" u|$	" 
" " " " " "r<   r   Frq   
transposedr=   c                     |rt          j        dt          d           t          j        rt
          j        j        nt
          j        j        }|	                    |           S )a	  
    This function converts a dense tensor into a sparse semi-structured tensor.
    It will return a SparseSemiStructuredTensor, a subclass of torch.Tensor.

    This function will check to ensure the dense tensor has the right dtype, size, dims, and device.
    We currently only support semi-structured sparse tensors for 2d CUDA tensors.
    Additionally, your tensor must be a positive multiple of the minimum sparse block size, given in
    `_DTYPE_TO_SHAPE_CONSTRAINTS` for each dtype (float32, float16, bfloat16, int8).

    Args:
        original_tensor (Tensor): the dense tensor to convert
        transposed (bool, optional): deprecated arg to be removed in another release. Do not use.
    Returns:
        SparseSemiStructuredTensor: A sparse semi-structured tensor created from the given original_tensor
    Raises:
        None
    Example:
        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
        >>> A = torch.Tensor([0, 0, 1, 1]).tile((128, 32)).half().cuda()
        tensor([[0., 0., 1.,  ..., 0., 1., 1.],
                [0., 0., 1.,  ..., 0., 1., 1.],
                [0., 0., 1.,  ..., 0., 1., 1.],
                ...,
                [0., 0., 1.,  ..., 0., 1., 1.],
                [0., 0., 1.,  ..., 0., 1., 1.],
                [0., 0., 1.,  ..., 0., 1., 1.]], device='cuda:0', dtype=torch.float16)
        >>> A_sparse = to_sparse_semi_structured(A)
        SparseSemiStructuredTensor(shape=torch.Size([128, 128]))
        >>> A_sparse.values()
        tensor([[1., 1., 1.,  ..., 1., 1., 1.],
                [1., 1., 1.,  ..., 1., 1., 1.],
                [1., 1., 1.,  ..., 1., 1., 1.],
                ...,
                [1., 1., 1.,  ..., 1., 1., 1.],
                [1., 1., 1.,  ..., 1., 1., 1.],
                [1., 1., 1.,  ..., 1., 1., 1.]], device='cuda:0', dtype=torch.float16),
        >>> A_sparse.indices()
        tensor([[-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                ...,
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370]], device='cuda:0', dtype=torch.int16))
    zSetting transpose from `to_sparse_semi_structured` is deprecated and will be removed in a future release. `SparseSemiStructuredTensor` only support contiguous input tensors.rs   )
stacklevel)
r-   r.   FutureWarningr   r   r1   sparser   r   r   )rq   r   SPARSE_SUBCLASSs      r:   r   r   >  sn    b  
R 	
 	
 	
 	
 &4	?66\>  %%o666r<   c                   ^    e Zd ZdZdZej         edddd          ej         edddd          ej	         edddd          ej
         edddd          iZed	ej        d
d fd            Z fdZe	 dd	ej        d
dfd            Zdddej        deej                 d
ej        fdZ xZS )r   a  
    This class implements semi-structured sparsity for the CUTLASS backend.


    In this implementation, the specified elements and metadata are stored separately,
    in packed and meta respectively.

    When _FORCE_CUTLASS is set, or when cuSPARSELt is not available, this subclass calls into _sparse_semi_structured_(mm|addmm) and
    sparse_semi_structured_from_dense for conversion to the compressed format.
    cutlass          @         rq   r=   c           	          |                      |           t          |          \  }} | |j        ||d d d |j                  S )Nr    r!   r"   r#   r$   r(   )r   r   r'   r(   )r7   rq   sparse_tensor_cutlassmeta_tensor_cutlasss       r:   r   z,SparseSemiStructuredTensorCUTLASS.from_dense  sd     	,,_=== 6oFF	
!s!($(,)7
 
 
 	
r<   c                     | j         | j        J | j         j        dk    rt          | j        | j                   nt	                                                      S )Nrs   )r!   r    ndimr   superr   )rC   rA   s    r:   r   z*SparseSemiStructuredTensorCUTLASS.to_dense  sa    y$)@)@)@ y~""	 4	  
 !!##	
r<    r   c           	      j    t          j        ||d          \  }}}}} | |j        |||||d          S )a  
        This function takes in a unpruned dense tensor and runs a (branchless) static sort across a 4x4 tile.

        It greedily picks the largest values in the tile, upholding the 2:4 sparsity constraint across both rows and columns.
        The algorithm used to prune the matrix is implemented in `_sparse_semi_structured_tile`.

        Then it creates the packed and meta tensors for the compressed sparse representation of the pruned dense tensor.
        It also calculates the packed_t and meta_t tensors for the compressed sparse representation of the transposed
        pruned dense tensor.
        Since we cannot transpose the compressed representations, we store both for the fw/bw pass respectively.

        Finally, this function also computes a compressed swizzled bitmask that encodes the sparsity pattern
        This can be used in the backward pass to mask the gradients.

        [9 1 7 4]                       [9 0 7 0]
        [1 2 3 0]                       [0 2 0 0]
        [8 3 5 4] -> prune 4x4 tile  -> [8 0 0 4] -> pack to CUTLASS semi-structured -> packed
        [1 2 6 2]                       [0 0 6 2]                                    -> metadata

                                                  -> pack to transposed CUTLASS      -> packed_t
                                                     semi-structured representation  -> metadata_t

                                                  -> compute swizzled bitmask        -> compressed_swizzled_bitmask


        The equivalent PyTorch code to create the same five outputs from the dense tensor can be found below:
        ```
        from torch.sparse import SparseSemiStructuredTensorCUTLASS
        from torch.sparse._semi_structured_conversions import _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask

        pruned = _sparse_semi_structured_tile(dense)
        packed_cutlass, meta_cutlass = sparse_semi_structured_from_dense_cutlass(pruned)
        packed_t_cutlass, meta_t_cutlass = sparse_semi_structured_from_dense_cutlass(pruned.t().contiguous())
        bitmask = _compute_compressed_swizzled_bitmask(pruned)

        SparseSemiStructuredTensorCUTLASS(dense.shape, packed_cutlass, meta_cutlass, packed_t_cutlass, meta_t_cutlass, bitmask)
        ```
        T	algorithmuse_cutlassFr   r1   _sparse_semi_structured_tiler'   r7   rq   r   r    r!   r"   r#   r$   s           r:   prune_dense_static_sortz9SparseSemiStructuredTensorCUTLASS.prune_dense_static_sort  sh    b .yd
 
 
	
'
 s!(C
 
 
 	
r<   Nr   r   r   c                   t          |t                    rt          d          | j        j        }| j        dk    s|j        dk    rt          d| d          | j        | j        t          d| d          |!t          j
        | j        | j        |          }n!t          j        || j        | j        |          }|d | j        d                  S )NZ`SparseSemiStructuredTensor @ SparseSemiStructuredTensor` is not supported by the hardwarers   `)` matmul: Broadcasting is not implemented$` matmul: operation is not supportedr   )
isinstancer   r4   rA   rB   r   rY   r    r!   r1   _sparse_semi_structured_mm_sparse_semi_structured_addmmr'   )rC   r   r   r]   cls_nameress         r:   r   z%SparseSemiStructuredTensorCUTLASS._mm  s     a344 	l   >*9>>QVq[[%GHGGG   ;$)"3%BHBBB   |6t{DIqQQ9$+ty!  A''r<   r   )rB   r   r   r   r   r1   int8r   float16bfloat16float32r   r   r5   r   r   r   r   r   __classcell__)rA   s   @r:   r   r     sj       	 	 G
222sBCC55b"aCC66r2q!DD55b"aCC	  
#l
	,
 
 
 [
$	
 	
 	
 	
 	
 68<
 <
#l<
	%<
 <
 <
 [<
~ BF( ( (((0(>(	( ( ( ( ( ( ( (r<   r   c                   N   e Zd ZdZdZej         edddd          ej         edddd          ej	         edddd          ej
         edddd          iZedej        dd fd            Ze	 ddej        dd
fd            Zdddej        deej                 dej        fdZdS )r   a  
    The cuSPARSELt backend expects the specified elements and the metadata to be stored in a single tensor:
    packed = [ specified elements of original tensor | metadata ]
    For an original tensor of size (m, k) we expect the first m * k // 2 elements to be the kept elements
    The rest of the tensor is metadata. Since there is only one tensor, we only use the packed and packed_t
    attributes respectively.

    cuSPARSELt also supports transposition fusion, which is necessary for performant 2:4 sparse training, as well
    as specifying alg_id, a config that affects the performance of the matmul depending on matmul sizes.
    
cusparseltr   r   r   rq   r=   c                     |                      |            | |j        t          j        |          d d d d t          j        t          j        |j        	  	        S )NrR   )r   r'   r1   _cslt_compressr   r   r   r(   r   s     r:   r   z/SparseSemiStructuredTensorCUSPARSELT.from_dense!  sc     	,,_===s!''88(,&@&P8H)7

 

 

 
	
r<   r   r   c           	      j    t          j        ||d          \  }}}}} | |j        |||||d          S )a  
        This function does the same thing as described in SparseSemiStructuredCUTLASS, but uses the cuSPASRELt metadata
        layout and sparse matmul.

        The only functional difference is that cuSPARSELt stores `metadata` and `packed` together into a single tensor.

        [9 1 7 4]                       [9 0 7 0]
        [1 2 3 0]                       [0 2 0 0]
        [8 3 5 4] -> prune 4x4 tile  -> [8 0 0 4] -> pack to cuSPARSELT semi-structured -> packed
        [1 2 6 2]                       [0 0 6 2]

                                                  -> pack to transposed cuSPARSELt      -> packed_t
                                                     semi-structured representation

                                                  -> compute swizzled bitmask           -> compressed_swizzled_bitmask


        The equivalent PyTorch code to create the same three outputs from the dense tensor can be found below:
        ```
        from torch.sparse import SparseSemiStructuredTensorCUSPARSELT
        from torch.sparse._semi_structured_conversions import _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask

        pruned = _sparse_semi_structured_tile(dense)
        packed_cusparselt = torch._cslt_compress(pruned)
        packed_t_cusparselt = torch._cslt_compress(pruned.t().contiguous())
        bitmask = _compute_compressed_swizzled_bitmask(pruned)

        SparseSemiStructuredTensorCUSPARSELT(dense.shape, packed_cutlass, None, packed_t_cutlass, None, bitmask)
        ```
        Fr   r   r   r   s           r:   r   z<SparseSemiStructuredTensorCUSPARSELT.prune_dense_static_sort2  sh    P .ye
 
 
	
'
 s!(C
 
 
 	
r<   Nr   r   r   c                   t          |t                    rt          d          | j        dk    s|j        dk    rt	          d| j        j         d          |j        | j        k    rWt	          d| j        j         dt          | j	                   dt          |j	                   d| j         d|j         d	          |g|j        | j        k    rWt	          d| j        j         dt          | j	                   dt          |j	                   d
| j         d|j         d          | j        t          j        k    rOt	          d| j        j         dt          | j	                   dt          |j	                   d| j         d	          | j        t	          d| j        j         d          t          j        | j        ||| j        | j                  }| j        r|                                n|S )Nr   rs   r   r   z` matmul: trying to do `A=z @ B=z`, with A.dtype=z and B.dtype=zH. This operation is only supported when A and B have the same data type.z + C`, with A.dtype=B.dtype=z and C.dtype=zK. This operation is only supported when A, B and C have the same data type.z`, with A.dtype=B.dtype=zO. mm is not supported for float8_e4m3fn, please use `torch._scaled_mm` instead.r   )r   transpose_resultalg_id)r   r   r4   r   rY   rA   rB   r+   r   r'   r1   float8_e4m3fnr    _cslt_sparse_mmr%   r&   rg   )rC   r   r   r]   r   s        r:   r   z(SparseSemiStructuredTensorCUSPARSELT._mmh  s    a344 	l   9>>QVq[[%VDN+VVV   7dj  %YDN+ Y YuTZGXGX Y Y_defel_m_m Y Y $
Y Y9:Y Y Y  
 
dj 8 8%\DN+ \ \uTZGXGX \ \_defel_m_m \ \(,
\ \AB\ \ \   :,,,%`DN+ ` `uTZGXGX ` `_defel_m_m ` `(,
` ` `  
 ;%QDN+QQQ   '!%!?-  C #<E355777#Er<   r   )rB   r   r   r   r   r1   r   r   r   r   r   r   r   r5   r   r   r   r   r   r<   r:   r   r     sR       	 	 G;;BBKK
222r2rBB55b"aCC66r2q!DD	  
#l
	/
 
 
 [
  683
 3
#l3
	%3
 3
 3
 [3
l BF*F *F *F*F(0(>*F	*F *F *F *F *F *Fr<   r   )F)r-   collectionsr   typingr   r   r   r1   )torch.sparse._semi_structured_conversionsr   r   !torch.sparse._semi_structured_opsr	   r
   r   r   r   r   r   r   r   r   __all__r   r5   r   r   r   r   r   r   r<   r:   <module>r      s    " " " " " " * * * * * * * * * *                                  ",$C" " U" U" U" U" U" U" U" U"t A7 A7\A7A7  A7 A7 A7 A7HH( H( H( H( H((B H( H( H(VEF EF EF EF EF+E EF EF EF EF EFr<   